PhD Scholarship Opportunity at the University of Manchester: APPLY NOW for a Chance to Study in the UK

TLDR: An ICASE PhD project funded by a generous scholarship drawing together ideas on co-operation in nature, co-operative game AI, and automatic algorithm design in order to tackle large-scale challenges in optimising energy transition technologies.

NOTE: This project is open for UK/EU/International candidates

Industrial partner: SLB / Schlumberger Cambridge Research

Supervisors: Manuel López-Ibáñez (University of Manchester); Joshua Knowles (SLB / SCR**

Application deadline for PhD Scholarship: 2 February 2024.

PhD Scholarship Benefits

  • PhD degree from a top university (top 10 in Europe, top 50 in the World)
  • All University fees paid by the project
  • Competitive stipend of at least 22,500 GBP / year (tax-free)
  • Work placement (3 months, reasonable living expenses can be claimed) at SLB’s Cambridge Research site to develop your research work and learn from top scientists and domain experts.

To apply for PhD Scholarship

PhD Scholarship Position is open now, application deadline is 2 February 2024, start date is September 2024.

Applications are sought from talented and motivated candidates with an academic background in at least one of these fields: Computer Science, Mathematics, Statistics, Operations Research, Data Science, Machine Learning, Industrial / Business Engineering or Business Analytics. Applicants must have a First or Upper Second Class Honours degree (or equivalent) and hold or expect to obtain a Masters level qualification with Distinction. English Language requirements (where required) are IELTS 7.0, TOEFL 623 (100 ibt), PTE 76.

Candidates should submit an online application for the PhD Business & Management, and indicate that they wish to be considered for the EPSRC/SLB INDUSTRIAL CASE PhD Studentship for “Co-op-Solve-M: A Co-operative Algorithm Framework for Solving Large-Scale Heterogeneous Problems with Multiple Objectives”.

Also Check  Mastercard Foundation Scholars Programme at the University of Cambridge 2024/2025 for young Africans is now open. Apply Now!

Apply here:

For questions related to your application, contact:

PhD Scholarship Supporting Documents:

  • A 3,000 word PhD research proposal or Project Proposal.
  • Copies of the academic transcript and certificate from both your Bachelor’s and Master’s degrees. If your Master’s degree is pending, please provide an interim transcript.
  • An up to date academic CV, detailing your education and qualifications; employment history; publications; and any other relevant information.
  • You must nominate two academic referees (including one from your most recent institution). Your referees will be contacted directly via the Referee Portal following submission of your application form. You may wish to contact your referees to request they submit your reference in a reasonable timeframe as this forms part of the review process.
  • An Equal Opportunities Monitoring Form.
  • International applicants must additionally provide English Language evidence (e.g IELTS).

Project description

Rapid developments needed in new energy technologies (e.g. for scalable generation plants that can provide a continuous supply) will depend upon solving linked and large-scale global optimisation problems. Whereas algorithms for academic benchmark problems are well-studied, progress in more realistic optimisation settings is being stifled by a lack of deep understanding. Most real problems are multi-objective and are composites of several problem types, and what’s needed is a deep dive into how to efficiently solve such problems cooperatively.

There are a number of distinct but related research threads that can be brought together to tackle this challenge and make progress. These include: using teams of single-objective solvers to cooperatively tackle multiobjective problems; automatic algorithm configuration and selection methods that can combine and tune algorithmic components; and so-called ‘interwoven’ problems. Our aim will be to discover common principles among these ideas, and bring them together into a new paradigm.

Also Check  2024 Eiffel Excellence Scholarship Program to study in France


SLB’s future growth in the New Energy sector will depend crucially on its ability to scale deployments and operations efficiently and robustly as they become larger and more complex to design and manage. We will rely increasingly on digital solutions to drive our progress in these new complex market sectors. Routinely solving large-scale optimisation problems in planning, scheduling, crew assignment, discovery, and investment will become a critical need.

A central challenge is how to optimise for multiple competing objectives (e.g. profit vs safety vs sustainability), which are important at a business management level, even when these depend on solving many low-level (deployment and operational) problems not described in the same way.

” alt=”” data-recalc-dims=”1″ data-ezsrc=”″ />
SLB is a funding and research partner of RayGen – a solar hydro innovator with plans to scale up their generation plants


The challenge of building the tools needed to describe and solve composite, complex problems at scale is partly caused by a troublesome feature of optimisation algorithms — that they are designed to work efficiently on one specific problem class: there are no good generalist solvers (not at the base level).

Of course, important attempts have been made before to create cooperative solvers that draw on, and co-ordinate, efficient base solvers, and some of these are successfully deployed by market-leading companies in some sectors. However, there remains a central open challenge, and that is to solve high-level problems with multiple objectives using a mix of heterogeneous solvers each designed to optimise a low-level problem for a single objective.

Project Proposal

Our previous published work in tuning frameworks for single objective and multiple objective algorithms, as well as recognised expertise in multiobjective optimisation, suggest a fruitful way to make a significant step forward. Our main research questions for your Project Proposal are :

  • Under which conditions can we decompose multiple objective problems, for which we would like to obtain p
Also Check  Apply for French Master's Scholarship 2024-2025

different trade-off solutions, into p separate single-objective subspace problems by co-operatively maximising ‘distance’ from p−1

  • other solutions?
  • What other methods of multiobjective problem decomposition provide a promising general method, and what are their properties?
  • How can we adapt automatic configuration (hyper-parameter optimisation) methods such as irace to combine and tune cooperative collections of single-objetive solvers to tackle a multiobjective problem? Can this be done efficiently?
  • Heterogeneity exists in multiobjective problems in several different ways. Can we identify meta-features and a single “language” for describing such problems to enhance the meta-learning and meta-optimisation that arise during the automatic configuration phase?
  • How can we enrich the description of interwoven problems made up of separate but interlinked elements, and can we identify common challenges in such problems?

Industrial partner

SLB is the new name for Schlumberger (after rebranding in 2022). SLB is a global energy technology company employing 95,000 people with 160 nationalities, and operating in over 120 countries. SLB has been an international leader in supplying the technology for most of the main energy firms since the 1920s.

It prides itself on its people, technology and performance. Nowadays, SLB is committed to bringing the tools needed for a global energy transition at scale. It is investing significantly in innovation of diverse solutions to energy production and storage, carbon capture and related new opportunities. It also sees digital solutions as a core growth area and enabling technology of the business.

Schlumberger Cambridge Research, located on one of the science parks at Cambridge University (near to the famous Cavendish Laboratory and Cambridge Computer Laboratory among others), is a subsidiary of SLB, and represents the pinnacle of SLB’s research capability. It employs around 70 scientists with expertise in all areas of energy development and digital technologies. Its purpose is to develop technologies in TRL1,2,3 (the most innovative) and with a 5-10 year development horizon.


Leave a Comment